05Jan

(2-x)/(x+1)>=4 дробное неравенство

Rula Алгебра 2 19

(2-x)/(x+1)>=4 дробное неравенство

Posted by Rula | Posted at Jan 05, 2014 | Categories: Алгебра

Answers

Олі4ка47
Олі4ка47

[latex] frac{2-x}{x+1} geq 4 \ \ frac{2-x}{x+1} -4 geq 0 \ \ frac{(2-x)-4*(x+1)}{x+1} geq 0 \ \ frac{2-x-4x-4}{x+1} geq 0 \ \ frac{(5x+2)}{x+1} leq 0 \ \ 5x+2=0 \ x=-0.4 \ \ x+1=0 \ x=-1 [/latex] {5x+2≥0  ⇔ {x≥-0.4  ⇔решений нет {x+1<0         {x<-1   {5x+2≤0 ⇔ {x≤-0.4   ⇔x∈[-0.4;-1) { x+1>0       {x>-1

Jan 05, 2014 06:00
Puet49
Puet49

(2-x)/(x+1)-4≥0 (2-x-4x-4)/(x+1)≥0 (-5x-2)/(x+1)≥0 x=-0,4   x=-1              _                +                      _ ----------------(-1)-------------[-0,4]------------------ x∈(-1;-0,4]

Jan 05, 2014 06:02

Leave a answer