05Jan

Точка А расположена на отрезке СЕ, а точка D расположена на отрезке СВ таким образом, что треугольники CАB и CDE равны, причем CD=CA=1, DВ=AЕ=3, площадь треугольника САВ равна 1. Отрезки АB и ED пересекаются в точке F. Чему равна площадь четырехугольника CAFD? Если ответ не записывается в виде конечной десятичной дроби, округлите его до сотых. Помогите пожалуйста

Алинур Геометрия 1 12

Точка А расположена на отрезке СЕ, а точка D расположена на отрезке СВ таким образом, что треугольники CАB и CDE равны, причем CD=CA=1, DВ=AЕ=3, площадь треугольника САВ равна 1. Отрезки АB и ED пересекаются в точке F. Чему равна площадь четырехугольника CAFD? Если ответ не записывается в виде конечной десятичной дроби, округлите его до сотых. Помогите пожалуйста

Posted by Алинур | Posted at Jan 05, 2014 | Categories: Геометрия

Answers

lubana
lubana

Треугольники САВ и CDE равны, значит равны и их высоты, следовательно, точка F равноудалена от сторон угла С и лежит на биссектрисе

Jan 05, 2014 07:25

Leave a answer